MultiLineString class
A MultiLineString is a MultiCurve whose elements are LineStrings.
class MultiLineString extends GeometryCollection{
/**
* Creates a multilinestring for a collection of [linestrings].
*
* If [linestrings] is null or empty, an empty [MultiLineString]
* is created.
*/
MultiLineString(Iterable<LineString> linestrings) : super(linestrings);
/**
* Creates an empty multilinestring.
*/
factory MultiLineString.empty() => _EMPTY_MULTI_LINE_STRING;
/**
* Creates a new multilinestring from the WKT string [wkt].
*
* Throws a [WKTError] if [wkt] isn't a valid representation of
* a [MultiLineString].
*/
factory MultiLineString.wkt(String wkt) {
var g = parseWKT(wkt);
if (g is! MultiLineString) {
throw new WKTError("WKT string doesn't represent a MultiLineString");
}
return g;
}
@override int get dimension => 1;
@override String get geometryType => "MultiLineString";
/**
* This multilinestring is closed if all child line strings are
* closed.
*/
bool get isClosed => _geometries.every((g) => g.isClosed);
/**
* Replies the spatial length of this multilinestring.
*/
@specification(name:"length()")
num get spatialLength {
throw new UnimplementedError();
}
/**
* The boundary of a [MultiLineString] consists of the boundary
* points of the child geometries which occur an odd number of
* times in the boundaries.
*/
@override
Geometry get boundary {
var pointRefCounts = new Map<DirectPosition2D, int>();
countPosition(pos) {
if (pointRefCounts.containsKey(pos)) {
pointRefCounts[pos] = pointRefCounts[pos] + 1;
} else {
pointRefCounts[pos] = 1;
}
}
// count the number of occurences for each boundary point
forEach((child) {
if (child.isEmpty) return;
child.boundary.forEach((p) {
countPosition(new DirectPosition2D(p.x,p.y));
});
});
// boundary points with odd occurences in the child boundaries
// are considered to be boundary points of this MultiLineString
// too
var points = [];
pointRefCounts.forEach((pos, count) {
if (count %2 == 0) return;
points.add(new Point(pos.x, pos.y));
});
return new MultiPoint(points);
}
_writeTaggedWKT(writer, {bool withZ: false, bool withM: false}) {
writer.write("MULTILINESTRING");
writer.blank();
if (!this.isEmpty) {
writer.ordinateSpecification(withZ: withZ, withM: withM);
}
if (isEmpty){
writer.empty();
} else {
writer..lparen()..newline();
writer..incIdent()..ident();
for(int i=0; i< length; i++) {
if (i > 0) writer..comma()..newline()..ident();
elementAt(i)._writeWKT(writer, withZ: withZ, withM: withM);
}
writer..newline();
writer..decIdent()..ident()..rparen();
}
}
}
Extends
Geometry > Geometry_IterableMixin > Geometry_IterableMixin__GeometryContainerMixin > GeometryCollection > MultiLineString
Constructors
new MultiLineString(Iterable<LineString> linestrings) #
Creates a multilinestring for a collection of linestrings.
If linestrings is null or empty, an empty MultiLineString is created.
MultiLineString(Iterable<LineString> linestrings) : super(linestrings);
factory MultiLineString.empty() #
Creates an empty multilinestring.
factory MultiLineString.empty() => _EMPTY_MULTI_LINE_STRING;
factory MultiLineString.wkt(String wkt) #
Creates a new multilinestring from the WKT string wkt.
Throws a WKTError if wkt isn't a valid representation of a MultiLineString.
factory MultiLineString.wkt(String wkt) {
var g = parseWKT(wkt);
if (g is! MultiLineString) {
throw new WKTError("WKT string doesn't represent a MultiLineString");
}
return g;
}
Properties
final String asText #
A WKT representation of the geometry
@specification(name:"asText()")
String get asText {
var buffer = new StringBuffer();
var writer = new _WKTWriter(buffer);
_writeTaggedWKT(writer, withZ: is3D, withM: isMeasured);
return buffer.toString();
}
final Geometry boundary #
The boundary of a MultiLineString consists of the boundary points of the child geometries which occur an odd number of times in the boundaries.
@override
Geometry get boundary {
var pointRefCounts = new Map<DirectPosition2D, int>();
countPosition(pos) {
if (pointRefCounts.containsKey(pos)) {
pointRefCounts[pos] = pointRefCounts[pos] + 1;
} else {
pointRefCounts[pos] = 1;
}
}
// count the number of occurences for each boundary point
forEach((child) {
if (child.isEmpty) return;
child.boundary.forEach((p) {
countPosition(new DirectPosition2D(p.x,p.y));
});
});
// boundary points with odd occurences in the child boundaries
// are considered to be boundary points of this MultiLineString
// too
var points = [];
pointRefCounts.forEach((pos, count) {
if (count %2 == 0) return;
points.add(new Point(pos.x, pos.y));
});
return new MultiPoint(points);
}
final int dimension #
The inherent dimension of this geometric object, which must be less than or equal to the coordinate dimension. In non-homogeneous collections, this will return the largest topological dimension of the contained objects.
@override int get dimension => 1;
final E first #
final String geometryType #
Returns the name of the instantiable subtype of Geometry of which this geometric object is an instantiable member. The name of the subtype of Geometry is returned as a string.
@override String get geometryType => "MultiLineString";
final bool is3D #
A collection of geometries is considered 3D if every child geometry has a non-null z-component.
The value of this property is computed upon first access and then cached. Subsequent reads of the property efficiently reply the cached value.
@override
bool get is3D {
if (_is3D == null) _computeIs3D();
return _is3D;
}
final bool isClosed #
This multilinestring is closed if all child line strings are closed.
bool get isClosed => _geometries.every((g) => g.isClosed);
final bool isEmpty #
Returns 1 true if this geometric object is the empty Geometry.
bool get isEmpty => !iterator.moveNext();
final bool isMeasured #
A collection of geometries is considered measured if every child geometry has an m-component.
The value of this property is computed upon first access and then cached. Subsequent reads of the property efficiently reply the cached value.
@override
bool get isMeasured {
if (_isMeasured == null) _computeIsMeasured();
return _isMeasured;
}
final bool isSimple #
A geometry collection is simple if all its child geometries are simple.
@override bool get isSimple => every((g) => g.isSimple);
final Iterator<Geometry> iterator #
the iterator to access the geometry objects
Iterator<Geometry> get iterator {
if (_geometries == null) return [].iterator;
else return _geometries.iterator;
}
final E last #
final int length #
final int numGeometries #
Replies the number of geometries in this collection.
This getter is equivaled to the method getNumGeometries()
in the SFS, but see also length.
@specification(name:"getNumGeometries") int get numGeometries => length;
final E single #
Returns the single element in this.
If this is empty or has more than one element throws a StateError.
E get single {
Iterator it = iterator;
if (!it.moveNext()) throw new StateError("No elements");
E result = it.current;
if (it.moveNext()) throw new StateError("More than one element");
return result;
}
final num spatialLength #
Replies the spatial length of this multilinestring.
@specification(name:"length()")
num get spatialLength {
throw new UnimplementedError();
}
Operators
dynamic operator [](int n) #
Replies the <em>n</em>-th geometry in this collection.
This is the Dart'ish implemenation of getGeometryN() using
operator overloading.
@specification(name:"getGeometryN") operator [](int n) => elementAt(n);
Methods
bool any(bool f(E element)) #
bool contains(E element) #
E elementAt(int index) #
Returns the indexth element.
If [this] [Iterable] has fewer than
index elements throws a
RangeError.
Note: if this does not have a deterministic iteration order then the
function may simply return any element without any iteration if there are
at least
index elements in this.
E elementAt(int index) {
if (index is! int || index < 0) throw new RangeError.value(index);
int remaining = index;
for (E element in this) {
if (remaining == 0) return element;
remaining--;
}
throw new RangeError.value(index);
}
bool every(bool f(E element)) #
Iterable expand(Iterable f(E element)) #
Expand each element of this Iterable into zero or more elements.
The resulting Iterable will run through the elements returned by f for each element of this, in order.
The returned Iterable is lazy, and will call
f for each element
of this every time it's iterated.
Iterable expand(Iterable f(E element)) => new ExpandIterable<E, dynamic>(this, f);
E firstWhere(bool test(E value), {E orElse()}) #
Returns the first element that satisfies the given predicate f.
If none matches, the result of invoking the
orElse function is
returned. By default, when
orElse is null, a StateError is
thrown.
E firstWhere(bool test(E value), { E orElse() }) {
// TODO(floitsch): check that arguments are of correct type?
for (E element in this) {
if (test(element)) return element;
}
if (orElse != null) return orElse();
throw new StateError("No matching element");
}
dynamic fold(initialValue, combine(previousValue, E element)) #
Reduces a collection to a single value by iteratively combining each element of the collection with an existing value using the provided function.
Use initialValue as the initial value, and the function combine to create a new value from the previous one and an element.
Example of calculating the sum of an iterable:
iterable.fold(0, (prev, element) => prev + element);
dynamic fold(var initialValue,
dynamic combine(var previousValue, E element)) {
var value = initialValue;
for (E element in this) value = combine(value, element);
return value;
}
void forEach(void f(E element)) #
Geometry getGeometryN(int n) #
Replies the <em>n</em>-th geometry in this collection.
@specification(name:"getGeometryN") Geometry getGeometryN(int n) => elementAt(n);
String join([String separator]) #
Converts each element to a String and concatenates the strings.
Converts each element to a String by calling Object.toString on it.
Then concatenates the strings, optionally separated by the
separator
string.
String join([String separator]) {
Iterator<E> iterator = this.iterator;
if (!iterator.moveNext()) return "";
StringBuffer buffer = new StringBuffer();
if (separator == null || separator == "") {
do {
buffer.write("${iterator.current}");
} while (iterator.moveNext());
} else {
buffer.write("${iterator.current}");
while (iterator.moveNext()) {
buffer.write(separator);
buffer.write("${iterator.current}");
}
}
return buffer.toString();
}
E lastWhere(bool test(E value), {E orElse()}) #
Returns the last element that satisfies the given predicate f.
If none matches, the result of invoking the
orElse function is
returned. By default, when
orElse is null, a StateError is
thrown.
E lastWhere(bool test(E value), {E orElse()}) {
// TODO(floitsch): check that arguments are of correct type?
E result = null;
bool foundMatching = false;
for (E element in this) {
if (test(element)) {
result = element;
foundMatching = true;
}
}
if (foundMatching) return result;
if (orElse != null) return orElse();
throw new StateError("No matching element");
}
Iterable map(f(E element)) #
Returns a lazy Iterable where each element e of this is replaced
by the result of f(e).
This method returns a view of the mapped elements. As long as the
returned Iterable is not iterated over, the supplied function
f will
not be invoked. The transformed elements will not be cached. Iterating
multiple times over the the returned Iterable will invoke the supplied
function
f multiple times on the same element.
Iterable map(f(E element)) => new MappedIterable<E, dynamic>(this, f);
E reduce(E combine(E value, E element)) #
Reduces a collection to a single value by iteratively combining elements of the collection using the provided function.
Example of calculating the sum of an iterable:
iterable.reduce((value, element) => value + element);
E reduce(E combine(E value, E element)) {
Iterator<E> iterator = this.iterator;
if (!iterator.moveNext()) {
throw new StateError("No elements");
}
E value = iterator.current;
while (iterator.moveNext()) {
value = combine(value, iterator.current);
}
return value;
}
E singleWhere(bool test(E value)) #
Returns the single element that satisfies f. If no or more than one
element match then a StateError is thrown.
E singleWhere(bool test(E value)) {
// TODO(floitsch): check that argument is of correct type?
E result = null;
bool foundMatching = false;
for (E element in this) {
if (test(element)) {
if (foundMatching) {
throw new StateError("More than one matching element");
}
result = element;
foundMatching = true;
}
}
if (foundMatching) return result;
throw new StateError("No matching element");
}
Iterable<E> skip(int n) #
Iterable<E> skipWhile(bool test(E value)) #
Returns an Iterable that skips elements while
test is satisfied.
The filtering happens lazily. Every new Iterator of the returned
Iterable will iterate over all elements of this.
As long as the iterator's elements do not satisfy
test they are
discarded. Once an element satisfies the
test the iterator stops testing
and uses every element unconditionally.
Iterable<E> skipWhile(bool test(E value)) {
return new SkipWhileIterable<E>(this, test);
}
Iterable<E> take(int n) #
Iterable<E> takeWhile(bool test(E value)) #
Returns an Iterable that stops once
test is not satisfied anymore.
The filtering happens lazily. Every new Iterator of the returned
Iterable will start iterating over the elements of this.
When the iterator encounters an element e that does not satisfy
test,
it discards e and moves into the finished state. That is, it will not
ask or provide any more elements.
Iterable<E> takeWhile(bool test(E value)) {
return new TakeWhileIterable<E>(this, test);
}
List<E> toList({bool growable: true}) #
Set<E> toSet() #
Iterable<E> where(bool f(E element)) #
Returns a lazy Iterable with all elements that satisfy the
predicate
f.
This method returns a view of the mapped elements. As long as the
returned Iterable is not iterated over, the supplied function
f will
not be invoked. Iterating will not cache results, and thus iterating
multiple times over the the returned Iterable will invoke the supplied
function
f multiple times on the same element.
Iterable<E> where(bool f(E element)) => new WhereIterable<E>(this, f);